基于大客流的地铁车站设施配置优化模型
张艳妮[1],张鹏2,陈洪3,保丽霞3
(1.镇江市交通规划设计院,镇江 212013; 2.江苏大学汽车与交通工程学院,镇江2120131;
3.上海市城市建设设计研究院智能交通研发中心,上海 200125)
摘要:针对大客流,建立了以乘客平均密度最小(平均占用空间最大)为目标的设施配置优化模型。该模型是一个整数非线性规划模型,变量是售票设施开放的数目和闸机开放机时数。以上海轨道交通一号线火车站站为例,对该模型进行了实例验证。结果表明,在大规模客流集中达到情况下,相比传统的组织方法而言,该模型可以使客流均匀分布到枢纽的各个空间区域,有效地提高地铁车站的服务水平。
关键词:地铁;大客流;限流组织;旅客密度;整数非线性规划;
中图分类号:U231+. 92
An optimization model of facilities collocation for large passenger flow in subway station
ZHANG Yan-ni1, ZHANG Peng2, CHEN Hong3, BAO Li-xia3
(1. Zhenjiang Communications Planning and Design Institute, Zhenjiang 212013,China;
2. School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China;3. ITS R&D, Shanghai Urban Construction Design and Research Institute, Shanghai 200125, China)
Abstract: An optimization model of facilities collocation was proposed for large passengers in subway station. The problem was formulated as an Integer-Nonlinear-Problem, the object is minimization of average density of passengers (maximum of average space occupied by passengers), and the integer variables are the numbers of opening ticketing facilities and gates. The numerical test was done based on the hub of Shanghai railway station and subway line one, and the results show that, compared with the existing organizational methods, this model can make distribution of passengers more evenly in various spatial region of the subway station, so the level of service to passengers can be significantly improved.
Key words: Subway; Large passenger flow; Passenger flow restriction; Passenger density;
Integer nonlinear programming
0引言
城市轨道交通线路的走向一般都是客流集中的交通走廊,连接着重要的客流集散点,如客运枢纽站、商业中心、文体活动中心等。此类站点在节假日或遇有大型活动时常出现客流在某一时段集中到达,客流超过车站正常客运设施所能承担的客流量的情况,称为大客流[1]。此时车站内部会非常拥挤(发生滞留现象),如果不加以控制不仅会对乘客出行造成不利影响,还会对运营安全造成较大威胁。目前,针对城市轨道车站大客流常采用人工的组织方法[2-7],此类方法依赖人工经验,组织效果和效率都难以保证。
本文采用运筹学的理论建立了滞留旅客均匀分布的大客流组织的数学模型,考虑合理调节地铁车站客流服务设施的工作数量(如自动售票机、闸机等)以达到滞留乘客流均匀分配到各个空间区域(购票空间、进站排队空间和站台等候空间)的目的。然后,以上海轨道交通一号线火车站站为例,对该模型进行了验证。